What is Partitioner in MapReduce?
Partitioner in MapReduce
Intermediate-outputs in the key-value pairs partitioned by a partitioner. The number of reducer tasks is equal to the number of partitions in the job.
Implementation
Let us take some employee details from the ONLINEITGURU company as an input table with the name employee.
Emp_id | name | age | gender | salary |
6001 | aaaaa | 45 | Male | 50,000 |
6002 | bbbbb | 40 | Female | 50,000 |
6003 | ccccc | 34 | Male | 30,000 |
6004 | ddddd | 30 | Male | 30,000 |
6005 | eeeee | 20 | Male | 40,000 |
6006 | fffff | 25 | Female | 35,000 |
6007 | ggggg | 20 | Female | 15,000 |
6008 | hhhhh | 19 | Female | 15,000 |
6009 | iiiii | 22 | Male | 22,000 |
6010 | jjjjj | 24 | Male | 25,000 |
6011 | kkkk | 25 | Male | 25,000 |
6012 | hhhh | 28 | Male | 20,000 |
6013 | tttt | 18 | Female | 8,000 |
To find the highest salaried employee by gender in different age group
In “/home/hadoop/hadoopPartitioner” data is saved by the input.txt.
6001 | aaaaa | 45 | Male | 50,000 |
6002 | bbbbb | 40 | Female | 50,000 |
6003 | ccccc | 34 | Male | 30,000 |
6004 | ddddd | 30 | Male | 30,000 |
6005 | eeeee | 20 | Male | 40,000 |
6006 | fffff | 25 | Female | 35,000 |
6007 | ggggg | 20 | Female | 15,000 |
6008 | hhhhh | 19 | Female | 15,000 |
6009 | iiiii | 22 | Male | 22,000 |
6010 | jjjjj | 24 | Male | 25,000 |
6011 | kkkk | 25 | Male | 25,000 |
6012 | hhhh | 28 | Male | 20,000 |
6013 | tttt | 18 | Female | 8,000 |
Maptasks:
Maptask takes key-value pairs as an input.
Input: The key pattern should like “special key + filename + line number”
For example: key = #onlineitguru.
Method:
- Split function helps to separate the gender.
- Value(record data);
- Send the gender information.
String[] str = value.toString().split("t", -3); String gender=str[3]; context.write(new Text(gender), new Text(value));
Output: To the partition task, the data value is used as output, key – value pair from the map task.
To learn complete course go through Big Data Online Training Blog
Partitioner task: In the partition process data is divided into smaller segments.In this scenario based on the age criteria the key-value pair is divided into three parts.
- Key-value pairs collection
- Key = the value of a gender field in the record
- Value =the gender data value in the record
Method
Read the age field from the key-value pair as an input.
String[] str = value.toString().split("t");int age = Integer.parseInt(str[2]); With the following condition check the value of age.
- Age <= 20
- Age > 20 AND <= 30
- Age > 30
if(age<=20) { return 0; } else if(age>20 && age<=30) { return 1 % numReduceTasks; } else { return 2 % numReduceTasks; }
Output: The output data are segmented into three sets of key-value pairs.
Reduce task: We have to execute three reduce task here, because the total number of partitioner is equal to the total number of reduce task.
Input: With different sets of key-value pairs reducer will execute three times.
- Key = gender field value
- Value = gender data record
Method: Read each record of salary field value.
String [] str = val.toString().split("t", -3); Note: str[4] have the salary field value. if(Integer.parseInt(str[4])>max) { max=Integer.parseInt(str[4]); }
Check the salary with a maximum (max) variable, if str[4] is a maximum then assign the str[4] to a maximum, otherwise skip this step.
Execute the step 1 and step 2 repeatedly for each key-value pair.
context.write(new Text(key), new IntWritable(max));
Output: we will get three collections with different age group.
With respect to each age group,
- Maximum salary from male group
- Maximum salary from female group
In the configuration these below jobs should be specified
- Job
- Input and Output formats of keys and values
- Individual classes for Map, Reduce, and Partitioner tasks
Configuration conf = getConf(); //Create JobJob job = new Job(conf, "max_sal"); job.setJarByClass(PartitionerExample.class); // File Input and Output pathsFileInputFormat.setInputPaths(job, new Path(arg[0])); FileOutputFormat.setOutputPath(job,new Path(arg[1])); //Set Mapper class and Output format for key-value pair.job.setMapperClass(MapClass.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); //set partitioner statementjob.setPartitionerClass(CaderPartitioner.class); //Set Reducer class and Input/Output format for key-value pair.job.setReducerClass(ReduceClass.class); //Number of Reducer tasks.job.setNumReduceTasks(3); //Input and Output format for datajob.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class);
Example: package onlineitguru_emp; import java.io.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.conf.*; import org.apache.hadoop.conf.*; import org.apache.hadoop.fs.*; import org.apache.hadoop.mapreduce.lib.input.*; import org.apache.hadoop.mapreduce.lib.output.*; import org.apache.hadoop.util.*; public class onlineitguru_emp extends Configured implements Tool { //Map class public static class MapClass extends Mapper<LongWritable,Text,Text,Text> { public void map(LongWritable key, Text value, Context context) { try{ String[] str = value.toString().split("t", -3); String gender=str[3]; context.write(new Text(gender), new Text(value)); } catch(Exception e) { System.out.println(e.getMessage()); } } } //Reducer class public static class ReduceClass extends Reducer<Text,Text,Text,IntWritable> { public int max = -1; public void reduce(Text key, Iterable <Text> values, Context context) throws IOException, InterruptedException { max = -1; for (Text val : values) { String [] str = val.toString().split("t", -3); if(Integer.parseInt(str[4])>max) max=Integer.parseInt(str[4]); } context.write(new Text(key), new IntWritable(max)); } } public static class CaderPartitioner extends Partitioner < Text, Text > { @Override public int getPartition(Text key, Text value, int numReduceTasks) { String[] str = value.toString().split("t"); int age = Integer.parseInt(str[2]); if(numReduceTasks == 0) { return 0; } if(age<=20) { return 0; } else if(age>20 && age<=30) { return 1 % numReduceTasks; } else { return 2 % numReduceTasks; } } } @Override public int run(String[] arg) throws Exception { Configuration conf = getConf(); Job job = new Job(conf, "topsal"); job.setJarByClass(onlineitguru_emp.class); FileInputFormat.setInputPaths(job, new Path(arg[0])); FileOutputFormat.setOutputPath(job,new Path(arg[1])); job.setMapperClass(MapClass.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); //set partitioner statement job.setPartitionerClass(CaderPartitioner.class); job.setReducerClass(ReduceClass.class); job.setNumReduceTasks(3); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); System.exit(job.waitForCompletion(true)? 0 : 1); return 0; } public static void main(String ar[]) throws Exception { int res = ToolRunner.run(new Configuration(), new onlineitguru_emp(),ar); System.exit(0); } }
Save the above program by the name onlineitguru_emp.java in “/home/hadoop/hadoopPartitioner”.
Download the jar using the following link http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.
To get certification course visit:Big Data Hadoop Course
No comments: